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Abstract. Interdiffusion that proceeds via the vacancy mechanism with formation of an 
ideal substitutional solid solution is investigated by Monte Carlo simulation on a square 
lattice. The produced stochastic structures studied are the percolation diffusion front and 
the total boundary of the clusters. It is shown that they have a fractal geometry and that 
their evolution is characterized by a number of critical exponents. A conclusion is made 
that the fractal nature of the diffusion front leads to diffusion size effect in thin films. 
The approach used permits description of propagation of superconducting, conducting, 
magnetic and other phases during interdiffusion. 

1. Introduction 

The aim of this work is to investigate the geometry of structures produced by inter- 
diffusion in a solid, the laws governing the evolution of these structures and the diffusion 
size effect caused by the formation of these structures. 

Diffusive homogenization gives rise to numerous processes in solids, such as the 
onset of mechanical stresses, formation and growth of phases, chemical reactions, 
change of the electric conductivity, etc. These processes are usually described by using 
the macroscopic characteristics of the diffusive homogenization picture, that is the 
concentration profile and motion of plane having a constant concentration. It will be 
shown below, however, that such an averaged description is utterly insufficient, since 
it bypasses the most important features of the geometry of structures formed in the 
diffusion zone. These features are connected with the stochasticity of the diffusion 
process, which makes these structures essentially rough. Yet it is just these features 
which determine, for example, the kinetics of electric contact-making in diffusion, the 
change of electric properties of semiconductors following the spreading of the dopant 
(Mott transition, formation of p-n junction), and also the course of many other 
processes in solids. 

Their effect is particularly large in objects of small size. We have shown that the 
roughness of such structures plays a vital role in thin films and leads to the diffusion 
size effect. 

The problem is also important in connection with the recent advances in production 
of high-temperature superconducting materials. The study of geometry and the laws 
governing the evolution of the superconducting phase obtained by interdiffusion of 
sinterable components is of great interest. 

We have proposed and implemented an approach, different from the macroscopic 
one, to the description of interdiffusion. It provides a more complete description of 
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the diffusion picture in the language of scaling structures. The approach proposed is 
connected with a number of problems concerning the properties of percolation clusters. 
In contrast to the traditional problems, however, in which the static picture is analysed, 
we have investigated a case of physical importance (interdiffusion), for which it is 
essential to know how the percolation picture evolves with time. 

So far no attempts have been made to describe interdiffusion with the aid of the 
formalism used to describe fractal structures. Sapoval er a1 [ 11 used the algorithm 
developed to simulate percolation clusters to describe the diffusion picture on a square 
lattice in the case when the source of the diffusing atoms is an  equal-concentration 
line. Their method is quite rapid and therefore permits analysis of cases of large 
diffusion length. But it is not fully consistent since it combines macroscopic and  
microscopic approaches (no direct simulation of diffusion is performed). Its adequacy 
therefore still remains unclear. In particular, according to this method the probability 
of the appearance of an  atom in a given site depends only on the average concentration 
ascribed to the layer in which this site is placed, and  does not depend at all on the 
real surrounding of the site. Even if the potential energy of the atom is independent 
of the surrounding, such an  assumption may turn out to be incorrect for the diffusion 
mechanism in which a correlated jump of a group of atoms takes place (e.g. for a 
crowdion mechanism). 

2. Geometry and evolution of a diffusion front 

We have investigated, by Monte Carlo simulation, interdiffusion that proceeds via the 
vacancy mechanism. A square lattice of 100 x 200 atoms is divided into two 50 x 200 
atom sections. In  contrast to [ l ] ,  all the lattice sites are occupied. In one half are 
located atoms A, and in the other atoms B. A vacancy moves randomly over the lattice 
and  jumps each time with equal probability to one of the four nearest-neighbour sites. 

We designate the lattice boundaries parallel to the interface as, respectively, boun- 
daries A and B, and we call the two others the lateral boundaries. Boundaries A and 
B are reflecting. To decrease edge effects, the two other boundaries are ‘joined’ (cyclic 
boundary conditions). After every lo7 vacancy jumps we analyse the instantaneous 
location of atoms A and B. During the computer experiment, the vacancy executed 
3.6 x lo8  jumps. 

We introduce now the concept of a diffusion front (figure l ( a ) ) .  We explain this 
concept by ascribing to the atoms A and B different electric properties. Let A, for 
example, be metal atoms and  B insulator atoms. Let an  electric contact between atoms 
A be realizable via the nearest four neighbours. From the very beginning the outer 
boundary of the cluster of atoms A electrically connected with the boundary A coincides 
with the straight line separating the atoms A and B. This boundary should be displaced 
as a whole in the course of diffusion and its shape should change due  to the stochasticity 
of the diffusion process. We shall show that it becomes essentially rough. We call this 
boundary the percolation diffusion front. In fact the percolation diffusion front is the 
interphase boundary. It separates the conducting phase from the non-conducting one. 
(We shall refer henceforth, for brevity, to conducting and non-conducting phases, 
although the analysis applies equally well to a number of other problems for which 
the connectivity of atoms is important, e.g. to the propagation of magnetic phases, 
etc.) The location and  form of the front are determined both by the distribution of the 
atoms over the lattice cites and  by the connectivity radius. In our model the connectivity 
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radius is equal to unity, since the connection takes place only via nearest neighbours. 
It can, however, also be larger. Thus for Mott transition the connectivity radius is of 
the order of Bohr radius, which amounts to tens of lattice periods in semiconductors. 

Clearly, the diffusion front geometry and the laws governing its displacement should 
play the primary role in such processes as diffusion induced contact making or the 
change of electric properties of semiconductors following the diffusion of a dopant. 
These are, in fact, the diffusion front characteristics studied by us. 

We have shown that diffusion front is a line with dead ends and we have proved 
that it has no self-crossing. 

The form of the front at various instants of time is shown in figure 1. The geometrical 
scale properties of the front were investigated by two methods: (1) the front length 
L(A)  was measured with different step lengths A ;  (2) we then obtain for different values 
of d the average number N ( d )  of front points inside a circle of diameter d drawn 
around the front point. These plots after 2 . 4 ~  10' vacancy jumps are shown in 
figure 2, from which it is seen that the diffusion front is a fractal up to a scale of about 
40. The values of the fractal dimension were determined for various instants of time 
from the relations L(A)XA'-v~ and N ( d ) a d v v .  Both DL and DN have a weak 
tendency to increase with time against the background of the fluctuations. During the 
computer experiment DL rose from 1.56st0.02 to 1.67 *0.02, and DN from 1.48i0.01 
to 1.60*0.01. The inequality D,> DN was satisfied at each instant of time, since the 
dead ends were taken into account in the determination of DL. 

1 3 10 30 A 1 3 i o  30 d 

(a) ( b )  
Figure 2. Diffusion front scaling after 2.4 x 10' vacancy jumps. 

For each analysed front we determined also the distribution of the front points 
over layers parallel to the boundaries A and B, the shift xF of the average front position 
and the mean squared displacement from the central position, uF, which characterises 
the front width. The distribution of the front points over the layers turned out to be 
close to Gaussian (figure 3). 

In the course of diffusion the front of atoms A moved to the boundary A. We 
investigated the time evolution of the front characteristics. As seen from figure 4, the 
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Figure 3. Front atom distribution ( N )  over the layers ( n )  at different instants of time. 

, 

3 10 n, 10' 

Figure 4. Displacement of average position of front upon interdiffusion. 

front motion was given initially by x F a  t0.51'0.03 and later by x F X  t1.5*0.03 . The second 
regime was set in because the diffusion became such that the limited size of the lattice 
came into play. The value of the critical exponent in the first regime, corresponding 
to diffusion in semi-infinite sample, suggests that the exponent is exactly equal to 0.5. 
This means that the average front position moves like a line of constant concentra- 
tion cF. 

To continue the analysis we introduce the diffusion length 1, = 2 ( F t ) ,  where F is 
the diffusivity of the sample. For diffusion by the vacancy mechanism on a square 
lattice the diffusivity is F = f c w / 4 ,  where c is the vacancy concentration, w is the 
frequency of the vacancy jumps and f 50 .465  is the correlation factor. Hence I ,  = 
( f n / N ) ,  where n is the number of vacancy jumps and N is the number of lattice sites. 

Assuming that in the first regime the critical exponent for xF is exactly 0.5,  we get 

(1) xF = -( 0.18 * 0.02) I D  a 

The width of front had  a power-law growth 

u F a  13 cy, = 0.58 f 0.05. 

The number NF of atoms belonging to the front also increased with time t .  This 
growth, however, was against the background of strong fluctuations, so that it was 
impossible to determine the NF (I,) dependence reliably from the computer experiment. 
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It is nevertheless easy to show that this dependence should also follow a power law. 
Indeed, since the front is a fractal up to scales a u F ,  it can be represented as a linear 
chain consisting of squares xuF on the side, with the front fractal inside each square. 
The number of such squares is EaF,  and the number of atoms in each square is 
auF*. Hence 

NFocaF\-1 l ec(D\- ’ )  
(3) 

D 

NFE 1: a>v = %(D,v - 1). 

The values of fractal dimension in our case are somewhat lower than in [ 13, where 
a value DN = 1.76 * 0.02 was obtained for a diffusion length I ,  = 12 800. This is seem- 
ingly due to the fact that our lattice was smaller. Indeed, in [ l ]  the fractal dimension 
for 1, = 50 is DN = 1.62. The concentration on the average line of front, and also the 
values of the critical exponents for xF and uF, agree with data of [ 11, where it is shown 
also that a ,  = U/( U +  1) = 0.571 ( U  =: is the critical exponent of percolation theory). 
The difference between the factors preceding the power is due to the different initial 
and boundary conditions. 

Since, as noted above, the average position of the front at each instant coincides 
with the line of constant concentration cF, the question of value and meaning of this 
concentration arises. From general consideration one can expect it to be close to the 
critical concentration c, = 0.593 of percolation on a square lattice [2]. With the aid of 
the relation c F =  0.5 erfc(xF/lD) we obtain from (1) 

(4) CF = 0.60 * 0.01. 

It can thus be regarded as established that cF=  c, within the limits of error. This 
results agrees with that of [ 13. Assume that the relation cF = cp holds for all types of 
lattice. This suggests some conclusions regarding the front evolution. Since c, = 0.593 
in our case, and the plane c = 0.5 is immobile, the front moves away from its initial 
position to ‘its own’ lateral boundary. Therefore in the case of two semi-infinite samples 
having a square lattice no electric contact is produced during diffusion. On  the contrary, 
connectivity is lost in the sample. For a triangular lattice we have cF = cp = 0.5 [3]. This 
means that the line of the front will not move as a whole. A contact should be made, 
ho::.ever, as a result of the front’s own expansion which is characterized by the function 
( + F ( t ) .  

3. Diffusion size effect 

Analysis of the percolatiaon diffusion front thus permits a new; look at the laws 
governing the variation of electric and magnetic properties of a body caused by 
diffusion. For large diffusion length, when xF >> uF, the contact is produced at an instant 
when the xF plane, having a concentration c,, reaches the opposite boundary. At small 
lengths of diffusion zone, when uF is compatible with xF, it must be taken into account 
that the front has a width uF of its own, so that to make contact it is sufficient that 
the plane xF+ k g F  reaches the opposite boundary, where k is the certain coefficient 
of order unity. For a description of the development of the diffusion front it is important 
that x F  and uF have different time dependencies. Indeed, in a macroscopic description 
the diffusion in an unbounded solid is a self-similar problem, since the diffusion picture 
is determined completely by a dimensionless variables x / (  Ft)’’’. When diffusion is 
described in terms of diffusion front, it becomes clear that the problem is not self-similar 



Interdifusion: fractal structures and size efect 5315 

for small diffusion lengths. It becomes self-similar only in the limit of large lengths, 
when uF<< xF, that is I ,  < lo3. In such cases the problem is said to be incompletely 
self-similar. The incomplete self-similarity found means that the diffusion size effect 
caused by the fractal nature of the diffusion front takes place in solids. 

Since the values of front shift and front length fluctuate strongly, one should also 
expect electric-resistance fluctuations (noise) at the instant of contact making in small 
samples. 

It should be noted that in thin films there may be observed other diffusion size 
effects. For example, we have predicted [4] and experimentally confirmed [5] the 
existence of the diffusion size effect caused by the particularities of the crystal lattice 
dynamics near surface. 

4. Geometry and evolution of the total boundary of clusters 

Besides the diffusion front, we have investigated also the geometry and the evolution 
of the total boundary between all produced clusters of atoms A and B. This boundary 
is defined as the aggregate of bounds of type AB. It is just on this boundary that the 
mixing energy of atoms A and B ( E  = EAB - 0 . 5 ~ ~ ~  + EBB, where &AA, EBB and EAB are 
the binding energies of the corresponding atom pairs) is localized. It is therefore of 
interest to study the geometry and the time evolution of this boundary. 

In our model the probability of a vacancy jump in one or another direction does 
not depend on the surrounding. This corresponds to the limiting case E << kT. Clearly, 
the front is related to the total boundary of clusters just as the continental shore line 
is related to the shore line that includes also the shores of islands and lakes [6]. The 
dimension D b  of total boundary of the clusters comes close to two. Thus, Db= 
1.91 *0.01 after lo7 vacancy jumps and Db = 1.97i0.01 after 2 x  10' jumps (figure 5 ) .  
This means that in the limit of large diffusion lengths the boundary is the space-filling 
fractal. This corresponds to the results obtained by solving the percolation problem 

Figure 5. Scaling of  the total boundary of clusters formed upon interdiffusion after 2 x IO8 
vacancy jumps. 
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Figure 6. Length of the total boundary of clusters formed upon interdiffusion. 

in [6,7] where it is shown that the fractal dimension of the total boundary of clusters 
is equal to two. 

The number Nb of atoms of total boundary increases as a power law (see figure 
6): Nb = (320* 1 0 ) ~ ~ 8 r 0 ~ 0 2 .  This suggests that the critical exponent for Nb is equal to 
unity. Then 

Nb = (1.60*0.01)11, c€ f o  '. 

E = Nb& = ( 1 . 6 0 * O o . 0 1 ) l l ~ ~ ~  to'?. 

( 5 )  

The total alloy-mixing energy is therefore 

( 6 )  

The relation (5) suggests that the population of lattice site is independent on its 
surrounding in our case. Indeed, if this assumption is correct we get, recognising that 
c(x) = 0.5 erfc(x/l,), and the number of nearest neighbours is four, 

m 

Nb = 41 c(x)(  1 - c(x))  dx  = (8/ T ) " ~ ~ Z ,  = 1.60lZD (7)  L 
which correspond to (5). 

5. Conclusions 

The computer simulation and the analysis lead to the following conclusions 
(1) The geometry and the laws governing the evolution of a percolation diffusion 

front determine the kinetics of the diffusion growth of the phase for which the presence 
of connectivity (conductive, superconductive, magnetic, etc.) Between definite types 
of atoms is essential. The diffusion front is the boundary of such phases. 

(2) The diffusion front is characterized by a fractal geometry, and its evolution is 
described by a number of critical exponents. 

(3) The fractal nature of the diffusion front causes the diffusion size effect in solids. 
(4) In small samples the kinetics of electric contact making is determined not only 

by the kinetics of displacement of the front as a whole, but also by kinetics of the 
increase of its width. 
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(5) The evolution of the diffusion front is of fluctuating type and this should lead 
in small samples to fluctuations of the corresponding characteristics (e.g., of the electric 
resistance at the instance of contact making). 

(6) The fractal dimension of the total boundary of the clusters formed in the 
diffusion zone tends with time to two. 
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